Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer J ; 27(4): 297-305, 2021.
Article in English | MEDLINE | ID: covidwho-1354351

ABSTRACT

ABSTRACT: Despite multiple advances in the treatment landscape of chronic lymphocytic leukemia (CLL) during recent years, cellular therapies, such as allogeneic hematopoietic cell transplantation and chimeric antigen-engineered T cells, represent valuable therapeutic options for patients with multiply relapsed or poor-risk disease. This brief overview will summarize current results of cellular therapies in CLL including Richter transformation, suggest an indication algorithm and strategies for performing cellular therapies in these conditions, and discuss the impact of COVID-19 (coronavirus disease 2019) on allogeneic hematopoietic cell transplantation and chimeric antigen-engineered T cells in CLL.


Subject(s)
Cell- and Tissue-Based Therapy , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Antineoplastic Agents , COVID-19 , Cell- and Tissue-Based Therapy/trends , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Receptors, Chimeric Antigen
2.
Hum Cell ; 34(6): 1585-1600, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1316345

ABSTRACT

Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the "practical stem cells" for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn's disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.


Subject(s)
COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cells , Animals , Apoptosis , Autoimmune Diseases/therapy , Cell Proliferation , Cell- and Tissue-Based Therapy/trends , Crohn Disease/therapy , Humans , Immunomodulation , Inflammation , Lupus Erythematosus, Systemic/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mice , Neoplasms/therapy
3.
Biomolecules ; 10(10)2020 09 27.
Article in English | MEDLINE | ID: covidwho-1295752

ABSTRACT

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Subject(s)
Burns/therapy , Exosomes/transplantation , Hydrogels/therapeutic use , Wound Healing/genetics , Burns/pathology , Cell- and Tissue-Based Therapy/trends , Cellulose/therapeutic use , Exosomes/genetics , Humans , Hydrogels/chemistry , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Skin/growth & development , Skin/injuries , Skin/metabolism
4.
Drug Discov Today ; 26(10): 2269-2281, 2021 10.
Article in English | MEDLINE | ID: covidwho-1198694

ABSTRACT

Coronavirus 2019 (COVID-19) has caused significant disruption to the cell and gene therapy (CGT) industry, which has historically faced substantial complexities in supply of materials, and manufacturing and logistics processes. As decision-makers shifted their priorities to COVID-19-related issues, the challenges in market authorisation, and price and reimbursement of CGTs were amplified. Nevertheless, it is encouraging to see that some CGT developers are adapting their efforts toward the development of promising COVID-19-related therapeutics and vaccines. Manufacturing resilience, digitalisation, telemedicine, value-based pricing, and innovative payment mechanisms will be increasingly harnessed to ensure that market access of CGTs is not severely disrupted.


Subject(s)
COVID-19 , Cell- and Tissue-Based Therapy/trends , Genetic Therapy/trends , Health Care Sector/trends , Cell- and Tissue-Based Therapy/economics , Genetic Therapy/economics , Health Care Sector/economics , Humans
5.
Cytokine Growth Factor Rev ; 58: 114-133, 2021 04.
Article in English | MEDLINE | ID: covidwho-1007960

ABSTRACT

The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , COVID-19/epidemiology , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Multiple Organ Failure/prevention & control , Multiple Organ Failure/therapy , SARS-CoV-2/pathogenicity
6.
Stem Cell Rev Rep ; 17(1): 231-240, 2021 02.
Article in English | MEDLINE | ID: covidwho-915242

ABSTRACT

A potential ability of stem cells (SCs) is to regenerate and repair tissues in the human body by providing great prospects for therapeutic applications in the field of medicine. Currently, SC therapy is used in various conditions like diabetes, neurodegenerative disorders, etc. but faces some limitations like patient biocompatibility and chances of cross-infection. SCs are further modulated with nanoconjugates to overcome such challenges and will offer an advantage in the treatment of COVID-19. This pandemic requires design and development of proper treatment to save the life of human beings. Advancements in SC-based nanoconjugated therapy will open new avenues and create a significant impact in the development of futuristic nanomedicine. It may also emerge as a potential therapy for the management of infection in patients suffering from SARS-CoV-2 and related diseases such as pneumonia and virus-induced lung injuries. Graphical abstract Mechanisms of stem cell-based nanoconjugates for inhibition of replication of corona virus.


Subject(s)
COVID-19/therapy , Nanoconjugates/therapeutic use , Pandemics , Stem Cell Transplantation , COVID-19/virology , Cell- and Tissue-Based Therapy/trends , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL